★★★★★★★★★★★★★★★★
本站购买电子书等资源使用支付宝,无需注册直接付费后((弹出错误页面服务器忙,请稍等再试))不要关闭页面待页面电脑PC自动刷新(手机端需从支付宝页面按手机浏览器左上角返回键回到本页面,再自行手动刷新网页,推荐电脑访问)显示下载链接!不推荐edge等太高级的浏览器下载链接会阻拦,推荐迅雷、IDM等工具!请立刻及时下载(另存为)以免下次访问失效!如果有问题请在页面底部留言反馈(留下你的邮箱,仅限邮件交流,或在文章中更新交代回复)!部分带OCR版本的pdf书可以复制文字或搜索内容。下载失败了怎么办:点击这里
★★★★★★★★★★★★★★★★
对本站的直接交易方式不放心?你可以花1元购买美女短视频体验交易流程:点击这里,或者花2元预览资源截图或电子书内页:点击这里
PDF扫描版和图文版的区别,以及其他Word、mobi、txt、epub、azw3等各种电子版格式的选择:点击这里
★★★★★★★★★★★★★★★★
本站购买电子书等资源使用支付宝,无需注册直接付费后((弹出错误页面服务器忙,请稍等再试))不要关闭页面待页面电脑PC自动刷新(手机端需从支付宝页面按手机浏览器左上角返回键回到本页面,再自行手动刷新网页,推荐电脑访问)显示下载链接!不推荐edge等太高级的浏览器下载链接会阻拦,推荐迅雷、IDM等工具!请立刻及时下载(另存为)以免下次访问失效!如果有问题请在页面底部留言反馈(留下你的邮箱,仅限邮件交流,或在文章中更新交代回复)!部分带OCR版本的pdf书可以复制文字或搜索内容。下载失败了怎么办:点击这里
★★★★★★★★★★★★★★★★
对本站的直接交易方式不放心?你可以花1元购买美女短视频体验交易流程:点击这里,或者花2元预览资源截图或电子书内页:点击这里
PDF扫描版和图文版的区别,以及其他Word、mobi、txt、epub、azw3等各种电子版格式的选择:点击这里
本文链接:
https://read.jingjiufu.com/book-00081-24.html
文件大小:048.85 MB 实验数据多元统计分析-现代物理基础丛书24.pdf
下载地址:
实验数据多元统计分析 朱永生 编著 科学出版社9787030236760
作者:朱永生 著出版社:科学出版社出版时间:2009年02月
开 本:16开
纸 张:胶版纸
包 装:平装-胶订
是否套装:否
国际标准书号ISBN:9787030236760
所属分类:
图书>考试>公务员考试>国家公务员考试
内容简介
《现代物理基础丛书·典藏版:实验数据多元统计分析》介绍实验或测量数据的多元统计分析方法,内容包括:贝叶斯决策、线性判别方法、决策树判别、人工神经网络、近邻法、概率密度估计量法、H矩阵判别、函数判别分析、支持向量机法等,以及不同判别方法的比较。此外,还简要介绍了将多种多元统计分析方法的计算机程序汇集在一起的程序包TMVA(toolkit for multivariate data analysis),并分析了粒子物理实验数据分析中应用多元统计分析方法的一些实例。
《现代物理基础丛书·典藏版:实验数据多元统计分析》可供实验物理工作者和大专院校相关专业师生、理论物理研究人员、工程技术人员及从事自然科学和社会科学的数据测量和分析研究人员参考。
作者简介
暂无相关内容
目 录
前言
第一章 绪论
1.1 模式和模式识别
1.2 模式识别系统
1.2.1 原始数据获取
1.2.2 原始数据的预处理
1.2.3 特征提取和选择
1.2.4 分类决策
1.3 数据矩阵与样本空间
1.3.1 数据矩阵与样本空间
1.3.2 模式的相似性度量
1.3.3 样本点的权重和特征向量数据的预处理
1.4 主成分分析
1.4.1 主成分分析的基本思想
1.4.2 主成分分析算法
1.4.3 降维处理及信息损失
第二章 贝叶斯决策
2.1 基于最小错误率的贝叶斯决策
2.1.1 决策规则
2.1.2 错误率
2.1.3 分类器设计
2.2 Neyman-Pearson决策
2.3 正态分布时的贝叶斯决策
2.4 分类器的效率和错误率
2.4.1 分类器的效率、错误率和判选率矩阵
2.4.2 错误率的上界
2.4.3 利用检验样本集估计判选率矩阵和错误率
2.4.4 训练样本集和检验样本集的划分
2.4.5 利用判选率矩阵估计各类“真实”样本数
2.4.6 分类器判定的“信号”样本中错判事例的扣除
2.5 讨论
第三章 线性判别方法
3.1 线性判别函数
3.1.1 线性判别函数的基本概念
3.1.2 广义线性判别函数
3.1.3 线性分类器的设计
3.2 Fisher线性判别
3.3 感知准则函数
3.3.1 几个基本概念
3.3.2 感知准则函数
3.4 最小错分样本数准则函数
3.5 最小平方误差准则函数
3.5.1 平方误差准则函数及其MSE解
3.5.2 MSE准则函数的梯度下降算法
3.5.3 随机MSE准则函数及其随机逼近算法
3.6 多类问题
第四章 决策树判别
4.1 超长方体分割法
4.1.1 超长方体分割法的基本思想
4.1.2 超长方体分割法中阐值的确定
4.1.3 超长方体分割法的优缺点及其改进
4.1.4 超长方体分割法用于高能物理实验分析
4.2 决策树法
4.2.1 决策树法的基本思想
4.2.2 信号/本底二元决策树的构建
4.2.3 决策树的修剪
4.3 决策树林法
4.3.1 决策树林的构建
4.3.2 决策树林对输入事例的分类
4.3.3 重抽样法构建决策树林
第五章 人工神经网络
5.1 概述
5.1.1 生物神经元和人工神经元
5.1.2 人工神经网络的构成和学习规则
5.2 感知器
5.2.1 单输出单元感知器
5.2.2 多输出单元感知器
5.3 多层前向神经网络和误差逆传播算法
5.3.1 BP网络学习算法
5.3.2 BP网络学习算法的改进
5.4 Hopfield神经网络
5.4.1 离散Hopfield网络
5.4.2 连续Hopfield网络
5.4.3 Hopfield网络在优化计算中的应用
5.5 随机神经网络
5.5.1 随机神经网络的基本思想
5.5.2 模拟退火算法
5.5.3 Boltzmann机及其工作规则
5.5.4 Boltzmann机学习规则
5.5.5 随机神经网络小结
5.6 神经网络用于粒子鉴别
5.6.1 用于带电粒子鉴别的特征变量
5.6.2 带电粒子鉴别的神经网络的架构
5.6.3 网络的训练和粒子鉴别效果
第六章 近邻法
6.1 最近邻法
6.2 k近邻法
6.3 剪辑近邻法
6.3.1 两分剪辑近邻法
6.3.2 重复剪辑近邻法
6.4 可作拒绝决策的近邻法
6.4.1 具有拒绝决策的k近邻法
6.4.2 具有拒绝决策的剪辑近邻法
第七章 其他非线性判别方法
7.1 概率密度估计量方法
7.1.1 基本思想
7.1.2 总体概率密度的非参数估计
7.1.3 投影似然比估计
7.1.4 多维概率密度估计
7.1.5 近邻体积中样本数的确定
7.1.6 概率密度估计法与神经网络的性能对比
7.2 H矩阵判别
7.3 函数判别分析
7.4 支持向量机
7.4.1 分类面
7.4.2 广义分类面
7.4.3 支持向量机
第八章 不同判别方法的比较
8.1 不同判别方法的特点
8.2 多元统计分析程序包TMVA简介
参考文献
显示部分信息
商品详情
书名:实验数据多元统计分析 朱永生 编著 科学出版社9787030236760
定价:78.00元
作者:朱永生 著
出版社:科学出版社
出版日期:2009-02-01
ISBN:9787030236760
字数:237000
页码:188
版次:
装帧:平装
开本:16开
商品重量: